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Abstract Tracking problems are prevalent in the present day GPS and video systems. The prob-
lem of target tracking is a specific case of dynamic linear system estimation with additive noise.
The most widely used filter for these systems is the Kalman Filter (KF). The optimality of the
KF and similar Bayesian filters is guaranteed under particular probabilistic assumptions. How-
ever, in practice, and specifically in applications such as tracking, these probabilistic assumptions
are not realistic; indeed, the system noise is typically bounded and in fact might be adversarial.
For such cases, robust estimation approaches, such as H∞ filtering and set-value estimation, were
introduced with the aim of providing filters with guaranteed worst case performance. In this pa-
per we present an innovative approximated set-value estimator (SVE) which is obtained through
a Semi-Definite Programming (SDP) problem. We demonstrate that our problem is practically
tractable even for long time horizons. The framework is extended to include the case of partially
statistical noise, thus combining the KF and SVE frameworks. A variation of this filter which
applies a rolling window approach is developed, achieving fixed computational cost per-iteration
and coinciding with the classical SVE when window size is one. Finally, we present numerical
results that show the advantages of this filter when dealing with adversarial noise and compare
the performance of the various robust filters with the KF.
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1 Introduction

A tracking system aims at revealing properties of moving objects, such as location, velocity, size
etc., through sensor measurements. Tracking takes place in both civilian GPS and video security
systems, as well as military missile warning and interception, and border surveillance systems.

The linear tracking problem is a specific case of state estimation for the following dynamic
linear system

xt = Ftxt−1 + wt

yt = Htxt + vt.
(1)

The first equation in (1) describes the linear state transition between the time steps. Here xt ∈ Rr
is the state vector of the system at time t, Ft is a r × r transition matrix between the states at
time t, and wt ∈ Rr is the dynamic system noise at time t. The second equation in (1) describes
the observed output at time t, yt ∈ Rq which is a result of a linear transformation of the state by
matrix Ht of size q×r plus an additive observation noise vector vt. It is assumed that the model
parameters Ft and Ht are known, but both system noise and observation noise, and therefore the
system state, are unknown. The goal is to estimate xt by an estimator x̂t depending only on the
observed output yt. The transformation, which determines the value of the estimator x̂t based
on the observed output, is called a filter. The measure used to asses a given filter’s performance
is usually a function of the estimation error ‖xt − x̂t‖.

This problem has been widely investigated in the literature, and the method in which it is
solved depends heavily on the underlying assumptions on the noise vectors w and v. There are
commonly two types of assumptions on the noise: probabilistic and bounded. They lead to two
types of approaches to address the tracking problem.

If probabilistic noise is assumed then a Bayesian filtering approach is used. This approach
tries to better estimate the system’s state distribution, or expected estimation error, given the
measurements. The most widely used filter for this problem was introduced in 1960 by Rudolph
Kalman and is known as the Kalman Filter (KF) [14]. Given that the noise is white (expected
value of zero, uncorrelated) with known covariance, KF is the optimal least mean square error
(LMSE) estimator for the Gaussian case, and the optimal Linear LMSE estimator for the general
case. Other Bayesian filters, such as the particle filter, need less restrictive assumptions but
full knowledge of the distribution. However, in practice, and specifically in application such as
tracking, these probabilistic assumptions are not reasonable, since the system noise is in fact
bounded, and might be adversarial. In this case KF does not necessarily ensure good worse case
or even good average performance.

Robust Filtering is the approach aimed to cope with the case of bounded adversarial noise,
through minimizing the worst case performance. Perhaps the most well known robust method is
H∞ filtering, which tries to find a recursive filter such that a certain performance measure J will
be at most γ, a given “robustness parameter”, for any realization of the noise over a given finite
horizon. J is usually the ratio between the estimation square error and total noise normalized
error. The choice of γ is crucial, since a large γ is less robust but for small γ an appropriate
filter may fail to exist [29,25]. Moreover, the existence of such an estimator is conditioned on
the positive definiteness of some recursion matrices, and a violation of this condition can lead to
filter divergence. A more elaborate description of the filter and its application can be found in
[18,27,3,29].

A different robust approach is set-valued estimation (SVE) proposed by Schweppe in 1968 [26].
The estimate obtained through SVE is not a point but a set, usually an ellipsoid, in which the true
state lies. The center of the estimation ellipsoid does not necessarily serve as a good estimator,
since no underlying statistical model is assumed. In this context there are two types of uncertainty
constraints: one-step update which consists of three separate ellipsoid constraints, one for each
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noise type and one for prior estimation, and an energy type which constrains the sum of the entire
history of noise norms. Examples of filters constructed for one-step-update uncertainty can be
found in [26,15,8], and examples for energy uncertainty can be found in [6,10]. All these filters
have a recursive closed form solution, usually obtained through ellipsoidal calculus. Moreover,
the filters suggested by Schweppe [26] and El Ghaoui and Calafiore [8](the latter dealing also
with model parameter uncertainty), depend on the measurements specific realization while the
other previous mentioned filters do not. Furthermore, the closed form solution, obtained for the
classic SVE filters, is only well defined if positive definiteness and nullspace inclusion constraints
hold for some of the computed recursion matrices. However, as shown in [25], these constraints
do not hold in the general case and so the filter recursion can break down.

In this paper we suggest an alternative SVE method, which uses individual ellipsoid bounds
on each of the noise vectors at each point in time, instead of the classical one-step-update
and energy bounds. These constraints, which we term as full recollection noise bound, lead
to a more accurate worst case estimate. Thus, our model can be viewed, or interpreted, as
an approximated H1 filter, where the filter formulation is independent of the measurements’
realization and can be found recursively. This recursive filter is developed according to robust
optimization methodology, presented in [5], and obtained numerically by using Semi-Definite
Programming (SDP). The resulting SDP optimization problems, for finding a worst case solution
and the optimal filter matrices, are solved by an interior point method, which we demonstrate to
be practically tractable for both problem. Our method is well defined for any time horizon length
and no positive definite assumptions on the recursion matrices are needed. We also present a
version with fixed computational cost, using a rolling window updating scheme. In this scheme
we construct a recursive matrix, which defines the estimation ellipsoid, and use its inverse in
the following iterations. However, when implementing the algorithm we do not need to find the
matrix inverse explicitly, except to retrieve the worst case noise realization, which can be achieved
by using the Penrose-Moore pseudoinverse instead. In this version the solution obtained by using
a rolling window of size one is equivalent to using a one-step-update uncertainty bound, similar
to the one presented in [6].

The KF also has a deterministic interpretation which is derived from the solution to a reg-
ularized least square (RLS) problem [31,25]. Robust KF can be derived by solving a minimax
problem pertaining to this RLS. In that respect, SVE filters can be viewed as the solution of
the so called robust counterpart of the RLS formulation with noise uncertainty. In this paper we
suggest a different way to unify the SVE and KF frameworks. We present a generalized SVE
which includes both probabilistic and bounded noise. This model uses SDP to approximate a
filter which minimizes the worst case expected estimation error, and is reduced to either the KF
or SVE when the noise is either entirely probabilistic or bounded, respectively.

The rest of the paper is organized as follows: Sect. 2 presents the KF model and its disad-
vantage in dealing with bounded adversarial noise. Sect. 3 describes the worst case optimization
problem and its SDP approximation. In section 4 a few filtering models and their solutions are
described, including partly affine and fully affine filters, mixed probabilistic and bounded noise
optimal filter, and rolling horizon affine filters. Finally, Sect. 5 contains numerical examples of a
tracking problem, comparing the performances of the various robust filters and the KF.

We will use the following notation throughout the paper. For any m ∈ N the set {1, . . . ,m} is
denoted by [m]. For any vector set {a1, . . . ,am} of column vectors ai ∈ Rni we use the notation
a = [a1; . . . ; am] to denote a vertical concatenation of these vectors into a single vector a of
dimension n =

∑
i ni. The matrix Diag(a) is diagonal matrix whose diagonal elements correspond

with vector a. ai ∈ Rni denotes the ith partition element of vector a while ai ∈ R denotes its ith
coordinate. Notation ‖a‖ indicates the Euclidean norm of vector a, unless stated otherwise. Let
A be a matrix, then A′, Tr(A), rank(A) denote its transpose, trace and rank respectively. Let
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A,B ∈ Rn×m, then A′B ∈ Rn×n denotes the standard matrix product, A ◦B , Tr(A′B) ∈ R
denotes the matrices Frobenius inner product, and A •B ∈ Rn×m denotes the component wise,
or Hadamard, product, resulting in a matrix of the same dimensions. We denote A � 0 if A is a
symmetric positive-semi definite (PSD) matrix. Aij denoted the element in row i and column j
of the matrix, Ai· denotes the ith row of the matrix as a row vector and A·j denotes the column
j of the matrix as a column vector. Finally, e denotes a vector of all ones, 0 denotes matrix of
all zeros, I denotes the identity matrix, and Ii denotes a square matrix whose i diagonal block
corresponds with the identity matrix and all other elements are zero.

2 Problem Formulation and Bayesian Filtering

In this section we will discuss the assumptions and disadvantages of Bayesian estimation, and
more specifically the KF, with respect to the estimation problem of system (1).

In classic Bayesian estimation it is assumed that both wt and vt are independent random
variables, which are referred to as noise. The noise is assumed to be white and independent of the
state. Typically, both wt and vt are assumed to be Gaussian with distributions wt ∼ N(0,Qk)
and vt ∼ N(0,Rk). An unbiased estimator is considered one for which E(x̂t) = xt. We will
denote the covariance matrix of such an estimator by Pt ≡ Cov(x̂t − xt).

Given these assumptions the KF produces an unbiased least mean square error (LMSE) esti-

mator, i.e., it is an optimal filter with regard to the objective function of minimizing E(‖x̂t − x‖2),
or equivalently Tr(Pt). Given x̂t−1, an unbiased estimator for time t− 1 with covariance matrix
of Pt−1, the KF updates the estimator in two stages: the prediction stage and the updating
stage. In the prediction stage, x̂t|t−1, an a priori (predicted) estimator of xt, and an estimated
observed output ŷt are constructed as follows:

x̂t|t−1 =Ftx̂t−1

ŷt =Htx̂t|t−1.

In the updating stage, the a posteriori estimator is obtained by correcting the a priori estimator
x̂t|t−1 using the purified output zt and gain matrix Kt as follows:

zt =yt − ŷt

x̂t =x̂t|t−1 + Ktzt.

The gain matrix Kt balances the weight of the prior estimation with the current observed output,
and the recursive formulation for the optimal Kt is then given by the following equation:

K∗t = Pt|t−1H
′
tS
−1
t

where St = Cov(zt) and Pt|t−1 is the a priori estimation error covariance matrix.
The KF belongs to the family of linear filters. Linear filters determine the estimator’s value as

an affine function of the observed output history, or equivalently, of the purified output history
Zt = (z1, . . . , zt). Linear filters are the most widely used since they maintain the linearity of the
problem and are very easily implemented. The KF is the optimal linear filter for this setting,
meaning that the KF has a lower expected square estimation error (MSE) value than all other
linear filters, even if the noise is not Gaussian but still white. An extensive description of the
various types of KF variations and its limitations are given in [29], from which we will discuss a
few.
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There are extensions of KF which deal with correlation between process and measurement
noise and correlation between noise at different time steps. The Basic KF is sensitive to mod-
eling errors and implementation errors, as described early on by [12] and [23]. The filter can be
made more robust by using such heuristics as adding process noise and fading memory of “old”
measurements.

Though KF is the optimal linear filter, when dealing with non-Gaussian type noise large
variances may occur by applying a linear filter, as shown in [16,17,30]. The authors address this
problem by using a score function which is dependent both on the probability density function
and the realization.

The main problem with creating a robust KF is that we assume knowledge of not only the
model but indeed the noise distribution. The filter might be far from optimal when the noise is
not Gaussian, correlated, uni-modal, non-zero mean, or has a different variance than what we
assumed in the model. The robustness of KF was tackled by many researchers, mostly dealing
with the steady state filter. In [24] the authors showed KF is mildly sensitive to variation in the
noise. Some examples of robust KF, which deal with model and noise uncertainty, and give some
guaranty on the estimation error variance can be found in [32,9,33,7]. The KF and its variations
are still widely used filters in tracking, navigation, GPS software, image processing and robotics
[1,2].

Let us now examine the assumptions of classic estimation. The first problem we encounter
is the assumption white uncorrelated noise with known moments which is independent of the
system state. Let us consider the following implementation of estimation to what is known as the
α− β model for tracking, which assumes xt is a state vector consisting of location and velocity
and wt is represented by a linear transformation of the acceleration. The representation in the
one dimensional case is:

xt =

[
lt
st

]
, Ft =

[
1 ∆t
0 1

]
, wt =

[
∆t2

2
∆t

]
at

where lt ∈ R is the location,st ∈ R is the velocity and at ∈ R is the unknown acceleration of the
object. For most cases at is bounded and its distribution is not necessarily known. Furthermore,
given a purposeful object with bounded velocity, the at are dependent on the state as well as on
each other.

Hence, in this case, the KF underlying assumption of uncorrelated white noise with zero mean
is not valid. In fact, in many cases the true distributions are unknown and can not be used to
obtain a score function or construct an appropriate particle filter. Furthermore, if we assume
we only have knowledge of the bounds on state and noise variables then the measure the KF
optimizes (expected square error) is not appropriate. In this setting, not only is the worst case
performance of the KF unknown but it also may occur with high probability and be significantly
worse than the average performance; moreover, the true average performance might be worse
than the theoretical measure indicates.

In order to demonstrate this point consider the following tracking example: An object is
tracked moving only in one dimension, it has an initial uncertain state vector, with location
of at most 20m around the zero point and velocity of at most 10 m

sec . The object’s maximum
acceleration is 2 m

sec2 and the error of the sensor which measured the sensor location is at most
20m. In applying the KF we therefore assume that the probability of being below the maximal
errors and noise specified is 99% (three sigma), and derive the appropriate Gaussian distributions.
Now let us consider a scenario shown in Figure 1 where both acceleration and measurement
error oscillate between their extreme values. The KF produces an estimation which is as far
as 47m from the actual object and a velocity estimation error of up to 17 m

sec . Notice that a
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Fig. 1 KF Performance for Tracking Problem Example

naive location estimation, which takes the observation as the estimator, would have reduced the
maximal location error to only 20m.

3 Worst Case Approximation

Consider a setting in which the noise is unknown but bounded. The assumptions presented for
this setting are alternative to the ones given above for the classic Bayesian estimation, and
motivate the SVE approach.

Consider wt and vt which are constrained in uncertainty sets Wt and Vt respectively such
that:

Wt =

{
wt ∈ Rr

∣∣∣∣ ‖wt‖Q−1
t

=

√
w′tQ

−1
t wt ≤ αt

}
Vt =

{
vt ∈ Rq

∣∣∣∣ ‖vt‖R−1
t

=

√
v′tR

−1
t vt ≤ βt

}
where Rt and Qt are positive definite (PD) symmetric matrices. This form is referred to as
”Mahalanobis Distance” and it is a normalized probability distance. There are situations where
Qt itself is PSD and not PD, due to the fact that wt is actually a result of a linear transformation
of the actual noise at ∈ Rr̃ for r̃ < r, e.g., when at is the acceleration which affects both location
and velocity, as we have seen in the previous section. In this case we can write wt = Gtat and
so Qt = G′tQ

a
tGt where Qa

t is PD. So we will, from now on, refer to this case and define

Wa
t =

{
at ∈ Rr̃

∣∣∣∣‖at‖(Qa
t )−1 =

√
a′t(Q

a
t )
−1

at ≤ αt
}

In this context, since there is no probabilistic information, we are interested in finding a filter
which minimizes the worst case, rather than the mean, square estimation error. In order to find
such a filter we must first solve the problem of calculating the worst case estimation error given
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a filter. This is equivalent to finding the radius of a ball around the filter’s estimation in which
the true system state is guaranteed to exist.

A filter is a general function of the entire purified output history Zt = (z1, . . . , zt) which
produces an estimate x̂t+1. For simplicity, we restrict our discussion to affine mappings resulting
in a general linear filter, which takes the form

x̂t+1 = Fx̂t + kt +

t∑
τ=1

Kτ
t zτ , (2)

where kt ∈ Rr is an update term which is independent of the output and {Kτ
t }tτ=1, such that

Kτ
t ∈ Rr×q, are coefficient matrices for the output dependent update. Linear filters are widely

used in literature, since they enable constructing a simpler model and solution, and under some
assumptions, as in the case of KF, are proven to be optimal.

We will start by discussing the formulation and disadvantages of the one-step update noise
bound and proceed to discuss the full recollection noise bound. When implementing a one-step
update noise bound, such as presented in [26,6], one must choose a filter which maintains the
independence between time steps. Therefore, only filters which depend solely on the last purified
output, similarly to the KF, may be considered, i.e.,

x̂t = Fx̂t−1 + Kt
tzt. (3)

We also assume that the estimator x̂t−1, from the previous time period, is known to guaranty a
maximum square deviation of `t−1 from the previous (unknown) state, so that:

Xt−1 = {xt−1 | ‖x̂t−1 − xt−1‖ ≤ `t−1 } .

Under these assumptions calculating the worst case estimation error is equivalent to solving the
following semi-infinite optimization problem.

min
τ
τ

s.t.

‖x̂t − xt‖ ≤ τ
x̂t = Ftx̂t−1 + Kt

tzt

xt = Ftxt−1 + wt

wt = Gtat

yt = Htxt + vt

zt = yt −HtFtx̂t−1


∀at ∈ Wa

t

∀vt ∈ Vt
∀xt−1 ∈ Xt−1

(4)

We can now eliminate all the equations by replacing each LHS variable with its RHS equivalent
to obtain:

zt = HtFt(xt−1 − x̂t−1) + HtGtat + vt

x̂t = Ftx̂t−1 + Kt
tHtFt(xt−1 − x̂t−1) + Kt

tHtGtat + Kt
tvt

x̂t − xt = (Ft −Kt
tHtFt)(x̂t−1 − xt−1) + (KtHtGt −Gt)at + Kt

tvt

‖x̂t − xt‖2 =
∥∥(I−Kt

tHt)Ft(x̂t−1 − xt−1) + (Kt
tHt − I)Gtat + Kt

tvt
∥∥

Moreover, defining δt = x̂t − xt, we can treat the problem as finding the maximal ‖δt‖ where,

‖δt‖ =
∥∥(I−Kt

tHt)Ftδt−1 + (Kt
tHt − I)Gtat + Kt

tvt
∥∥ .
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Therefore, the condition δt−1 ∈ ∆t−1 = {δt−1 : ‖δt−1‖ ≤ `t−1} can be used instead of xt−1 ∈ Xt−1

to obtain the same worst case solution. Furthermore, since we are dealing with one time step, we
can omit the t or t−1 indexes, for ease of notation, and denoteWa ≡ Wa

t , V ≡ Vt, ∆ ≡ ∆t, a ≡
at, v ≡ vt, δ ≡ δt−1, α ≡ αt, β ≡ βt, ` ≡ `t, G ≡ Gt, Qa ≡ Qa

t , R ≡ Rt, K ≡ Kt
t, H ≡ Ht,

and F ≡ Ft.

max
a,v,δ

‖(I−KH)Fδ + (KH− I)Ga + Kv‖

s.t. a′Q−1
a a ≤ α2

v′R−1v ≤ β2

δ′δ ≤ `2

It is clear that the maximum is obtained since this is a continuous function in the uncertain
variables w,v and δ, which all lie within compact sets. But this problem is generally difficult to
solve, since we are trying to maximize a convex quadratic function of these variables.

The problem of finding the best linear one-step filter for this measure can be formulated as
a minimax problem of the following form:

min
K

max
a,v,δ

‖(I−HF)Fδ + (KH− I)Ga + Kv‖

s.t. a′Q−1
a a ≤ α2

v′R−1v ≤ β2

δ′δ ≤ `2

(5)

The assumptions that δ is constrained only by the norm obtained by the optimization for the
previous time step, allows us to create independence between time step decisions and maintain
both structure and dimension of the problem. The problem with this one-step update approach
is its conservativeness, since it does not necessarily reflect the real dynamics of the system. The
worst case ‖δt‖ is not necessarily generated by the same noise vector as the worst case ‖δt−1‖.
However, problem (5) implicitly assumes the existence of such a noise vector, and therefore might
protect us against, not only unlikely, but actually infeasible events. So even for this simple filter
structure there is an advantage in finding the true worst case solution, based on the entire noise
history.

Therefore, we will now consider an alternative problem of computing the worst case estimation
error based on the entire noise history. Since we are no longer restricted to a dependency on only
one time-step, we revert to discussing general linear filters defined in equation (2). Denoting the

uncertainty vector at time T as ωT = [δ1
0; . . . , δp0; a1; . . . ; aT ; v1; . . . ,vT ] where {δi0}

p

i=1 is some
partition of the initial estimation error δ0, we can define the corresponding uncertainty set as:

ΩT =

ωT = [δ1
0; . . . , δp0; a1; . . . ; aT ; v1; . . . ,vT ]

∣∣∣∣∣∣
a′tQ

−1
a at ≤ α2 t = 1, . . . , T

v′tR
−1vt ≤ β2 t = 1, . . . , T

δi0
′
δi0 ≤ `2i i = 1, . . . , p

 . (6)

We refer to this uncertainty set as a full recollection noise bound, since it maintains the entire
noise history information, and therefore allows only feasible realizations to be considered.
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The resulting estimation error vector, induces by applying linear filter (2), is then given by:

δT = x̂t − xt = F(x̂t−1 − xt−1) + kt +

t∑
τ=1

Kt
τ (HGaτ + vτ −HF(x̂τ−1 − xτ−1))−Gat

= kt + (Kt
tHG−G)at + Kt

tvt + (F−Kt
tHF)(δt−1)

+

t−1∑
τ=1

Kτ
t (HGaτ + vτ −HF(δτ−1)).

We denote KT = [kT ,K
1
T , . . . ,K

T
T ] as the gain matrix at time T . The worst case estimation

error, assuming known gains {Kt}Tt=1 and constant problem parameters F,H,G, is given as a
solution of the following optimization problem,

max
ωT∈ΩT

∥∥∥∥∥cT + Aδ0
T δ0 +

T∑
t=1

(Aat
T at + Avt

T vt)

∥∥∥∥∥ , (7)

where matrices Aδ0
T , {Aat

T }Tt=1, {Avt
T }Tt=1 and vector cT , given in (8), are computed recursively

using formula (3).

Aat
T =


(KT

THG−G) t = T, T ≥ 1

FAat
T−1 + KT

T (−HFAat
T−1) + Kt

THG−
T−1∑
τ=t+1

Kτ
THFAat

τ−1 1 ≤ t < T

0 otherwise

Avt
T =


KT
T t = T, T ≥ 1

FAvt
T−1 + KT

T (−HFAvt
T−1) + Kt

T −
T−1∑
τ=t+1

Kτ
THFAvt

τ−1 1 ≤ t < T

0 otherwise

Aδ0
T =

(FAδ0
T−1 −

T∑
t=1

Kt
THFAδ0

t−1) T ≥ 1

I otherwise

cT =

kT + FcT−1 −
T∑
t=1

Kt
THFct−1 T ≥ 1

0 otherwise.

(8)

For a one-step update compatible filter, in the form of (3), an even simpler formulation is
obtained:

max
ωT∈ΩT

∥∥∥∥∥
T∑
t=1

LTt+1((Kt
tH− I)Gat + Kt

tvt) + LT1 δ0

∥∥∥∥∥ (9)

where

Lt,t =

{∏t
t=t(F−Kt

tHF) t ≤ t
I t > t.

Obviously problem (3) is a specific case of (9) with T = 1 and p = 1, and therefore problem
(9) is harder. However, given the set of gain matrices {Kt

t}Tt=1 the problem has identical structure
(though not dimension) to (3) and gives a more accurate bound on the performance of the filter.

Similarly to (5) in the one-step update solution, we are actually interested in finding {Kt}Tt=1

which minimize (7). However, in the full recollection case, presented in (7), as well as the simpler
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version in (9), the objective function coefficients are not separable in {Kt}Tt=1. Therefore, the
question arises: how can we find a sequence {Kt}Tt=1 which minimizes the error over all t =
1, . . . , T simultaneously. Due to the high non convexity of the problem in variables {Kt}Tt=1,
the intuitive solution would be to produce a greedy algorithm, which at each point t finds the
best Kt and uses it as a parameter for the next time step. This greedy solution, however, does
not necessarily ensure an optimal worst case performance, since the solution for each time step
does not take into account the adverse effect it might have on the following time steps. The only
guarantee is for the first time step, which is not effected by prior decisions. Thus, given {Kt}T−1

t=1 ,
equation (8) ensures that the matrix E = [cT ,A

δ0
T ,A

a1

T , . . . ,A
aT
T ,Av1

T , . . . ,A
vT
T ] is actually an

affine transformation of KT .
Given {Kt}Tt=1, for some fixed T , problem (7) is a maximization of a convex non-homogeneous

quadratic function over convex quadratic constraints which define a compact set. This problem
is a Block Quadratic Constrained Quadratic Problem(Block-QCQP), and has a normalized re-
formulation, as shown in [28]. In this reformulation, we first add a scalar variable s such that
s2 ≤ 1, and change the objective function to:∥∥∥∥∥cT s+ Aδ0

T δ0 +

T∑
t=1

(Aat
T at + Avt

T vt)

∥∥∥∥∥ ,
which allows us to achieve a homogeneous objective function, without changing the optimal
solution (since there will always exist an optimal solution with s2 = 1 as proven in [28]). We
then construct the normalized noise vector χ = [χ1; . . . ;χm] ∈ Rn, where m = 2T + p + 1 and
n = 1 + p+ r̃T + qT , and the objective function coefficient matrices {Ãi}mi=1 as follows,

χi =


s, i = 1

δj0, i = j + 1, j ∈ [p]

Q
−1/2
a at, i = j + p+ 1, t ∈ [T ]

R−1/2vt, i = t+ T + p+ 1, t ∈ [T ],

Ãi =


cT , i = 1

A
δp0
T , i = j + 1, j ∈ [p]

Aat
T Q

1/2
a , i = j + p+ 1, t ∈ [T ]

Avt
T R1/2 i = t+ T + p+ 1, t ∈ [T ],

(10)

where A
δp0
T is the matrix whose columns are the columns of Aδ0

T which correspond with partition

element δp0. Therefore, the domain of χ is given by Ω̃ where

Ω̃ =
{
χ = [χ1; . . . ;χm] ∈ Rn : χi ∈ Rni , ‖χi‖

2 ≤ 1, i = 1, . . . ,m
}
. (11)

Moreover, for each i ∈ [m], Ãi can be presented as Ãi = KCi + Di, for some given matrices Ci

and Di. Moreover, δT = Ẽχ such that Ẽ = KTC + D, Ẽ = [Ã1, . . . , Ãm], C = [C1, . . . ,Cm]
and DT = [D1, . . . ,Dm]. The normalized representation of problem (7) is given by the following
formulation

ψT (KT ) = max
χ∈Ω̃
‖(KTC + D)χ‖ (WCE)

The solution of problem (WCE), where the gains {Kt}Tt=1 are known and therefore Ẽ is a fixed
matrix, is discussed extensively in [28], where the authors show that the problem is NP-hard. They
later show how to bound this problem using an semidefinite relaxation (SDR), which provides
a
√

2/π approximation. they also introduce various methods of obtaining a lower bound, and
discuss several cases in which there are exact solutions. Finally it is proved in [28] that this
approximation can be computed efficiently even for noise vectors with dimension reaching a few
thousands.
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An optimal greedy solution can then be obtained by solving the optimal robust linear filter
problem:

min
KT

ψT (KT ) (P)

Problem (P) is an optimal SVE problem, where the estimation set is an `2 ball, and the
noise has a full-recollection bound. At each point in time we find the filter which minimizes the
size (radius) of this ball. We will later show how this ball can be substituted by a more general
ellipsoid.

In Sect. 4 we demonstrate how the same SDR, which was used to approximate problem
(WCE), can also be utilized to efficiently obtain a sequence of gain matrices {Kt}Tt=1 which will
provide an approximation of (P). We discuss different types of filters, which utilize either the
entire noise and observation history, or part of it.

4 Robust Filtering

In this section we focus on solving problem (P). We assume that the recursive scheme discussed
in the previous section is utilized to obtain the sequence {Kt}Tt=1. Therefore, given a fixed T and
known gain matrices {Kt}T−1

t=1 , we denote the worst case solution of (WCE) for a certain filter
gain K ≡ KT as ψ(K) ≡ ψT (K). Using equation (WCE), problem (P) can be represented as the
following non convex problem in K.

min
K∈Rr×(qT+1)

ψ(K) = min
K∈Rr×(qT+1)

max
χ∈Ω̃

∥∥∥∥∥
m∑
i=1

(KCi + Di)χi

∥∥∥∥∥ = min
K∈Rr×(qT+1)

max
χ∈Ω̃
‖(KC + D)χ‖ .

Since finding the worst case solution, when the filter gain matrices are given (the inner
maximization), is an NP-hard problem, it follows that finding the optimal filter gain matrices
for this measure is also NP-hard. Therefore, we will aim to find a filter which has worst case
performance close to that of the optimal filter, using the following definition.

Definition 1 Let ψ to be a function of matrix gain K, and K be a convex set. Let
ψ∗ = minK∈K ψ(K). a gain matrix K� ∈ K is a ρ-approximation filter of ψ∗ if ψ∗

ψ(K�) ≥ ρ where
0 << ρ < 1.

Rewriting ‖χi‖
2

= χ′Iiχ, squaring the objective function, the SDR for problem (WCE) is
given by the following.

ψSDP (K)2 = max
X
{Tr ((KC + D)′(KC + D)X ) : X � 0, Tr (IiX ) ≤ 1, i = 1, . . .m} .

(12)
From the results in [28,21] it follows that the value of the SDR for problem (WCE) for any given
K (the inner maximization in problem (12)), satisfies:

ψ(K) ≤ ψSDP (K) ≤
√
π

2
ψ(K). (13)

So an upper bound on the value of problem (P) is given by solving the following relaxation.

min
K

ψSDP (K)2
(SDR-P)

Furthermore, problem (12) is regular and convex for a given K, indeed X ≡ 0 is in the interior
of the feasible set, and the problem is bounded. Therefore strong duality holds. Consequently,
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replacing the inner maximization problem (12) by its dual, will results in the same objective
function value. Using this dual representation, problem (SDR-P) is as follows.

min
K∈Rr×Tq

min
µ∈Rm+

m∑
i=1

µi

s.t.

m∑
i=1

µiIi − (KC + D)′(KC + D) � 0

We can convert the single matrix inequality to an affine inequality in K. By utilizing the Schur
complement lemma this problem reduces to:

min
K∈Rr×Tq,µ∈Rm+

m∑
i=1

µi

s.t. m∑
i=1

µiIi (KC + D)′

(KC + D) I

 � 0

(DSDR-P)

The resulting problem is convex in both µ and K and is consequently solvable. Moreover any
optimal solution K� to problem (DSDR-P) is also optimal for problem (SDR-P).

The saddle point problem (SDR-P) can be solved directly, by applying algorithms which solve
the equivalent variational inequality, such as the ones presented in [20] and [22]. Alternatively
fast first order methods can be used to solve problem (DSDR-P) [4]. In both cases projection on
the semidefinite cone must be computed, at the computational cost of O(n3) per iteration, and
the number of iterations needed to achieve an accuracy of ε is of order O(1/

√
ε). There are also

methods which do not involve such a projection step and therefore have lower computational cost
per iteration. An example for such algorithm is the sampling algorithm, shown in [11], which
requires O(log(m)/ε2) iterations, each taking O(n2/ε1.5) operations to achieve accuracy ε and
ε-feasibility. Such algorithms may result in an infeasible solution, and are inefficient for small ε
values. The alternative to these methods is to use the interior point algorithm which converges
rapidly but might have high computational cost per iteration. The choice of which method to
use is then dependent on the trade-off between the problem size and the required precision.

We chose to implement the interior point methods for SDP described in [13], which is able
to solve problem (12) efficiently (See [28]). In this case, however, it is not trivial to show that
each iteration requires the same computational complexity as that required to solve the same
problem for fixed K, that is O(n3). Recalling that K ∈ Rr×(qT+1), and r << n is the constant
size of the estimated state, we can arrive at the following theorem:

Theorem 1 Let (DSDR-P) be the SDP relaxation of problem (P), with variables K ∈ Rr×q̃ and
µ ∈ Rm where q̃ ≤ qT + 1 and m = 2T + p+ 1 for constant q, p and r. Then problem (DSDR-P)
can be solved with accuracy ε by an interior point algorithm, within O(

√
n log( 1

ε )) iterations each
requiring O(n3) operations.

The proof of this theorem and full computational considerations as well as implementation
are given in appendix A. The following result shows that the filter obtained by solving prob-
lem (DSDR-P) is actually a

√
2/π-approximation filter.

Proposition 1 Let K� be an optimal solution of problem (DSDR-P), then gain K� defines a

ρ-approximation filter of ψ∗, with ρ =
√

2
π .
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Proof We use the notation ψSDP (K) given above, for the square root of the SDP relaxation
value for problem (WCE) given K. Given K∗ is an optimal solution of problem (P), with value
ψ∗, the following relations hold:

ψ(K∗) ≤ ψ(K�) ≤ ψSDP (K�) ≤ ψSDP (K∗)

The left and right inequalities are the result of K∗ being an optimal solution to problem (4) and
K� an optimal solution of problem (DSDR-P), the middle inequality is a result of the SDP being
a relaxation to (9) and therefore achieving a higher value. From the SDP relaxation properties
given in (13), we have that

√
π
2ψ(K∗) ≥ ψSDP (K∗), which leads directly to

ψ∗

ψ(K�)
=
ψ(K∗)

ψ(K�)
≥
√

2

π
. ut

We will refer to the optimal filter derived from problem (DSDR-P), and applied recursively,
as the Greedy Affinely Adjustable Robust filter (GAARF).

The following proposition shows that the added variable s, which we used to make the de-
pendence on KT linear rather than affine, is redundant. This is due to the fact that the constant
term cT can always be regarded as zero, which implies that there always exists an optimal filter
such that kt = 0 for any t.

Proposition 2 Given problem (P) where ψ(K) is defined with respect to some norm (not nec-
essarily Euclidean), there exists an optimal solution K∗ = [k,K1, . . . ,KT ] such that cT = 0.

Proof We will assume to the contrary, that any K∗ for which cT = 0 is not optimal, and therefore
there exists K� such that c† 6= 0 such that ψ(K�) < ψ(K∗). We take K� to be the optimal solution
and construct K∗ which is equal to K� in all elements except k. Notice that since cT = k + dT
where dT is some constant vector, and since AT defined above is independent of k, then by
choosing k = −dT (so cT = 0). The value of AT does not change. Let c†T ≡ k† + dT 6= 0
and since K∗ and K� only differ in the value of k then AT ≡ AT (K∗) = AT (K†). We define
ω ≡ ωT , the uncertain vector for time T , and ω∗, ω� to be the worst case solution for K∗ and K�

respectively. From symmetry of the uncertainty set both ω∗ and −ω∗ are feasible noise vectors
and therefore the following inequalities hold.

ψ(K∗) = ‖ATω
∗‖ =

1

2
‖c�T + ATω

∗ − (c�T −ATω
∗)‖

≤ 1

2
(‖c�T + ATω

∗‖+ ‖c�T −ATω
∗‖) ≤ ‖c�T + ATω

�‖ = ψ(K�)

where the last inequality is due to ω� being the worst case solution for K�. Thus, ψ(K∗) ≤ ψ(K�)
in contradiction with the assumption ψ(K�) < ψ(K∗). ut

Corollary 1 There exists an optimal solution to problem (P) such that kt = 0 for all t = 1, 2, . . .

The corollary is a straight forward result of proposition 2, applying it recursively from t = 1 to
obtain ct = dt + kt where dt is zero as a linear function of {kτ}t−1

τ=1 (see equation (8)).
Finally, we revisit the filter based on limited history, such as the one suggested in (3). This is

a good point of reference to show that a limited history filter might not be optimal. The problem
of finding the filter whose gain minimizes (9) is as follows.

min
KT∈KT

ψT (KT ), (14)

whereKT = {KT : kT = 0, Kτ
T = 0 ∀τ < T}. In general, based on Proposition 1 and Definition 1,

we can conclude the following.
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Corollary 2 Let K be a closed convex set, and define the extended value function ψ̃

ψ̃(K) =

{
ψ(K) K ∈ K
∞ otherwise

and let K� be an optimal solution of problem (DSDR-P) with added constraint K ∈ K, then gain

K� defines a ρ-approximation filter of ψ̃∗ = minK∈K ψ(K), with ρ =
√

2
π .

Corollary 2 and Theorem 1 imply that the filter based on the SDR of problem (14) can be
computed efficiently and is a

√
2/π-approximation filter of the optimal value of problem (14).

We call the filter obtained by this SDR and applied recursively the Greedy Robust Filter (GRF).

4.1 Optimizing Expected Worst Case Square Error

In the previous section we discussed the case where the noise elements are all unknown but
bounded. However, in tracking applications, while the system noise is usually bounded the mea-
surement noise is often probabilistic. This situation occurs when the sensor has a known statistical
error, while the object acts in an adversarial way, and the only knowledge of its movement is
given by its physical limitations. In this case the measurement error is independent of both the
dynamic system noise and the system’s state. Given this motivation, we dedicate this section to
discussing the way to obtain a filter which deals well with an uncertain noise vector ω which is
partly probabilistic and partly bounded. We start by generalizing the assumptions on ω given in
Sect. ??.

Assume ω is partitioned into two sets: ω1 ∈ Rn̄1 which is bounded and ω2 ∈ Rn̄2 which
is probabilistic. We further assume that ω1 is partitioned to m partition elements such that

element ω1
i is bounded in an ellipsoid ω1

i
′
B1
i
−1
ω1
i ≤ bi. The random noise ω2 has an unknown

probability distribution which satisfies E(ω2) = 0 and Cov(ω2) = B2, where B2 is a PD matrix,
and is independent of ω1 and of the state. We will look at the normalized form achieved by the

linear transformations χ1
i = B1

i
−1/2

ω1
i /bi and χ2 = B2−1/2

ω2. The set bounding the normalized
vector χ1, and the set of all possible probability distributions functions of the normalized random
variable χ2 are denoted Ω̃1 and P2 respectively, and defined below.

Ω̃1 =
{
χ1 : χ1′Iiχ1 =

∥∥χ1
i

∥∥2 ≤ 1, i = 1, . . . ,m
}
,

P2 =
{
P : if χ2 ∼ P then E(χ2) = 0, Cov(χ2) = I

}
.

(15)

Moreover, assuming χ2 ∼ P , the expected value of some function g of χ2 is denoted by Ep(g(χ2)).
Ideally, our goal would be to find a filter whose gain K minimizes the mean worst case

square estimation error measure, which combines the measures used in the Robust and Bayesian
frameworks. Given K we construct this measure in two stages. In the first stage, we represent
the worst case estimation error as a function of χ2, and obtain the following random variable,

ϕ(K,χ2) = max
χ1∈Ω̃1

∥∥∥∥∥∑
i

A1
iχ

1
i + A2χ2

∥∥∥∥∥
2

, (16)

where, as before, A1 ≡ KC1 + D1 and A2 ≡ KC2 + D2 are affine functions of K. In the second
stage, the expected value of this random variable is computed

ϕP (K) = EP (ϕ(K,χ2)).
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Notice that the value of ϕP (K) is a function of the specific unknown distribution P . The optimal
filter gain for each P ∈ P2 is then obtained by the following minimization.

ϕ∗P = min
K

ϕP (K). (EP)

Since each P produces a different filter, and P is unknown it is unclear from problem (EP)
which filter should be used. Even assuming P is known, computing ϕ(K,χ2) is NP-hard and does
not have a closed form (as shown in Sect. 3), leading to the problems of finding the expected value
ϕP (K) and optimal K being intractable. Therefore, we will try to obtain a bound on ϕP (K)
which has a closed form and is independent of P for any P ∈ P2. Optimizing K over this bound,
will produce a filter with guaranteed performance for any P ∈ P2.

We first define the value of the SDR of (16) for some given K and χ2 = 0 by (ψSDP (K))2

and
γ(K) = Tr(A2A2′) = EP (

∥∥A2χ2
∥∥2

), ∀P ∈ Ω̃2
P

ϕ(K, 0) = max
χ1∈Ω̃1

∥∥A1χ1
∥∥2
.

(17)

We proceed to introduce the following auxiliary problem

min
K
{ϕ(K, 0) + γ(K)},

as well as its α-SDP relaxation,

ϕ∗SDPα = min
K

{
(1 + α)(ψSDP (K))2 + (1 +

1

α
)γ(K)

}
. (α-SDP-EP)

Next, we show that problem (α-SDP-EP) is tractable and that it is in fact an approximation of
problem (EP) for any P ∈ P2.

Proposition 3 Let K� be an optimal solution to problem (α-SDP-EP) with α = 2/π. Then K�

is a β-approximation filter of ϕ∗P for any P ∈ P2, i.e.

ϕ∗P
ϕP (K�)

≥ β.

Proof Let χ̃1 ∈ arg max
χ1∈Ω̃1

ϕ(K, 0) for a given matrix K then by triangular inequality and the

optimality of χ̃1 that:∥∥∥∥∥∑
i

A1
iχ

1
i + A2χ2

∥∥∥∥∥ ≤ ∥∥∥∑A1
iχ

1
i

∥∥∥+
∥∥A2χ2

∥∥ ≤ ∥∥∥∑A1
i χ̃

1
i

∥∥∥+
∥∥A2χ2

∥∥ ∀χ1 ∈ Ω̃1

and therefore:

ϕ(K,χ2) ≤

(∥∥∥∥∥∑
i

A1
i χ̃

1
i

∥∥∥∥∥+
∥∥A2χ2

∥∥)2

=
∥∥A1χ̃1

∥∥2
+ 2

∥∥A1χ̃1
∥∥∥∥A2χ2

∥∥+
∥∥A2χ2

∥∥2

On the other hand we can bound the function from below:

ϕ(K,χ2) = max
χ1∈Ω̃1

∥∥∥∥∥∑
i

A1
iχ

1
i + A2χ2

∥∥∥∥∥
2

= max
χ1∈Ω̃1

{
∥∥A1χ1

∥∥2
+ 2(A1χ1)

′
A2χ2 +

∥∥A2χ2
∥∥2}

≥
∥∥A1χ̃1

∥∥2
+ 2(A1χ̃1)

′
A2χ2 +

∥∥A2χ2
∥∥2
.
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Moreover, for any P ∈ P2, the following holds true

EP ((A1χ̃1)′A2χ2) = (A1χ̃1)′A2EP (χ2) = 0

EP
(∥∥A1χ̃1

∥∥∥∥A2χ2
∥∥) =

∥∥A1χ̃1
∥∥EP (∥∥∥χ2′A2

∥∥∥) ≤√ϕ(K, 0)EP
(∥∥χ2′A2

∥∥2
)

=
√
γ(K)ϕ(K, 0),

where the inequality in the second line is due to the concavity of the square root function.
Combining this result with the definition of γ(K) and ϕ(K, 0) we obtain the following.

ϕ(K, 0) + γ(K) ≤ EP (ϕ(K,χ2)) = ϕP (K) ≤ ϕ(K, 0) + γ(K) + 2
√
ϕ(K, 0)γ(K)

≤ ((1 + α)ϕ(K, 0) + (1 +
1

α
γ(K)) ∀α > 0,

(18)

where the last inequality is derives from the fact that
√
ϕ(K, 0)γ(K) =

√
αϕ(K, 0) 1

αγ(K) and

the inequality of arithmetic and geometric means.
Given P , let K∗P denote an optimal solution for problem (EP). Combining the inequalities in

(18) with the fact that ϕ(K, 0) ≥ 2
π (ψSDP (K))2 for any K, as a result of the SDR approximation

(see equation (13)), we obtain the following inequalities,

ϕ∗P = ϕP (K∗P ) ≥ ϕ(K∗P , 0) + γ(K∗P ) ≥ min
K
{ϕ(K, 0) + γ(K)} ≥ min

K

{
2

π
(ψSDP (K))2 + γ(K)

}
ϕ∗P = min

K
ϕP (K) ≤ min

K

{
(1 + α)ϕ(K, 0) + (1 +

1

α
)γ(K)

}
≤ min

K

{
(1 + α)(ψSDP (K))2 + (1 +

1

α
)γ(K)

}
, ϕ∗SDPα .

Choosing α = 2/π, it follows that for β = (1 + π/2)−1 results in

ϕ∗SDP 2
π

β ≤ ϕ∗P ≤ ϕ∗SDP 2
π

.

Finally, using the optimality of K� it follows that K� defines a β-approximation filter of ϕ∗P :

ϕ∗P ≤ ϕP (K�) ≤ ϕ∗SDP 2
π

≤ 1

β
ϕ∗P , ∀P ∈ P2. ut

This proof implies that if the optimal solution K� satisfies ψSDP (K�) ≤ γϕ(K�, 0), for some
known 1 ≤ γ < π/2, then ϕ∗SDP 1

γ

is a (1 + γ) approximation of ϕ∗P . This means that if the SDR

is accurate (meaning γ = 1) then K� provides a 2-approximation filter.
We will now show that problem (α-SDP-EP) is equivalent to a convex optimization problem,

more specifically an SDP, and therefore tractable. We will then proceed to prove that this SDP
can be solved via an interior point method, similarly to problem (DSDR-P), without additional
computational expense.

Proposition 4 Solving problem (α-SDP-EP) is equivalent to solving the following SDP:

ϕ∗SDPα = min
K,µ,U

(1 + α)µ′e + (1 +
1

α
)Tr(U)

s.t. m∑
i=1

µiIi (KC1 + D1)′

(KC1 + D1) I

 � 0

[
U (KC2 + D2)

(KC1 + D1)′ I

]
� 0

(α-D-SDP)
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Proof Using the fact that of A1 and A2 are affine functions of K, the definition in (17) as well
as using the SDR dual, given in (DSDR-P), we can reformulate problem (α-SDP-EP) as follows:

min
K,µ

(1 + α)µ′e + (1 +
1

α
)γ(K)

s.t.

 m∑
i=1

µiIi (KC1 + D1)′

(KC1 + D1) I

 � 0.

(19)

In order to eliminate γ(K) from the objective function we use the following equivalence:

γ(K) = Tr
(
(KC2 + D2)(KC2 + D2)′

)
= min

U∈Rr×r

{
Tr(U) : U � (KC2 + D2)(KC2 + D2)′

}
,

and then apply the Schur complement to the problem’s constraint to obtain this alternative
linear matrix inequality [

U (KC2 + D2)
(KC2 + D2)′ I

]
� 0.

Substituting γ(K), in formulation (19), with the equivalent optimization problem, results in
problem (α-D-SDP). ut

Solving problem (α-D-SDP) is a bit more complex than (DSDR-P) because of the additional
constraint. Nonetheless, assuming r is fixed, the same interior point algorithm can be applied,
with approximately the same computational cost and a similar convergence rate.

Theorem 2 Let K ∈ Rr×q̃ where r is a fixed constant and O(q̃) = O(n) then problem (α-SDP-EP)
can be solved with accuracy ε via an interior point algorithm with cost of O(n3) operations per
iteration, and O(

√
n log( 1

ε )) iterations.

The proof and full implementation details is given in appendix B.
This approach of combining probabilistic and bounded noise, unifies the frameworks under-

lying both the KF and SVE. Moreover, if n̄1 = 0, i.e. the entire uncertainty vector is of a
probabilistic nature, the optimal filter, generated by this approach, will coincide with that of the
KF. Alternatively, if n̄2 = 0, i.e. the entire uncertainty is unknown but bounded, we revert to
the formulation presented in Sect. ??, i.e. the optimal filter will be the GAARF .

4.2 Ellipsoid Estimation Set and Rolling Horizon

Both the GAARF and the GRF presented in Sect. ??, are offline filters, in the sense that the
gain matrices KT can be computed in advance for each T . However, in both cases, the dimension
of the optimization problem solved to obtain these gain matrices grows linearly in time, leading
to computational difficulties as the value of T increases. This is due to the fact that the entire
noise history is considered explicitly when computing worst case performance. Yet not explicitly
considering the entire noise history, e.g., in the one-step update approach, will result in a filter
which is either too conservative and does not approximate the optimal filter well, or one which
is not sufficiently robust.

In this section we present a technique to obtain a more concise representation of the noise
history, which enables a constant computational cost per time-step without significant loss of
information. To achieve this goal we limit the number of past purified outputs used by the filter
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at each step. Let S be a predetermined integer, we are going to use a restricted linear filter with
gain matrix KT,S = [KT−S

T , . . . ,KT
T ], such that

x̂t = Fx̂t−1 +

t∑
τ=max{t−S+1,1}

Kτ
t zτ . (20)

However, this formulation still does not restrict the size of the problem, since zt is dependent on
the entire ωt vector, including noise elements from time steps smaller than T −S+ 1. Therefore,
the next step is to define a recursive formulation for δt = x̂t − xt which relies only on limited
noise history. For that purpose let Zst ≡ [zs, . . . , zt] and ωst ≡ [δs,as+1, . . . ,at,vs+1, . . . ,vt] to
denote the partial purified output and noise vector respectively. Note that Zt ≡ Z0

t and ωt ≡ ω0
t .

Given the filter structure in (20), we can apply the recursive formula, given by

δt = Fδt−1 + FGat +

t∑
s=t−S+1

Ks
T zs

zt = HFδt−1 + HGat + vt,

a fixed S̃ number of times, for t = T − S̃ + 1, . . . , T , to derive the following equalities,

δT = Aω
Tω

T
T−S̃ + AZ

TZT−S̃−S+2

T−S̃ ,

zT = Âω
Tω

T−S
T + ÂZ

TZT−S̃−S+2
T−S .

The recursive formulation for matrices Aω
T = [AδT−S̃ ,A

aT−S̃+1

T , . . . ,AaT
T ,A

vT−S̃+1

T , . . . ,AvT
T ],

AZ
T = [A

zT−S̃−S+2

T , . . . ,A
zT−S̃
T ], and similarly for Âω

T and ÂZ
T , given S̃ = S is presented in

appendix D.

If we could accurately calculate the set in which the vectors ZT−S̃−S+2

T−S̃ and δT−S̃ reside

(the so called estimation set) given the filters {Ks,S}T−1
s=1 we would retain all the information

of historical noise vector ωT−S̃ , thus approximating more accurately the worst case estimation.
Unfortunately, the estimation set structure is not known and might be complicated, and so in
order to maintain the problem’s structure we use ellipsoid estimation sets. Therefore, instead of
ΩT (presented in (6)), we consider the following uncertainty set.

ΩST =


[
ωT−S̃T ; ZT−S−S̃+2

T−S̃

] ∣∣∣∣∣∣∣∣∣
a′tQ

−1
a at ≤ α2 t = T − S̃ + 1, . . . , T

v′tR
−1vt ≤ β2 t = T − S̃ + 1, . . . , T

zt
′Σ−1

zt zt ≤ 1 t = T − S − S̃ + 2, . . . , T − S̃
δT−S̃

′Σ−1
δT−S̃

δT−S̃ ≤ 1

 . (21)

Notice that although the estimation sets of vectors Zt−S̃−S+2

t−S̃ and δT−S̃ are obviously dependent

due to the fact they all depend on ωt−S̃−S+2, we still calculate the estimation set of each vector
separately so to eliminate the dependency of the corresponding problem on t. Accordingly, using
independent ellipsoid estimation sets will incur some loss of information.

The uncertain vector [ωT−ST ; ZT−2S+2
T−S ] can be normalized, similarly to (10), provided that

matrices {Σzt}Tt=T−2S+1 and ΣδT−S are PD. Choosing S̃ = S, the normalized vector χ resides in

the uncertainty set Ω̃, defined by (11), withm = 3S. Moreover, matrices AT and ÂT , are replaced
by their normalized version Ẽ and Ẽz such that δt = Ẽχ and zt = Ẽzχ, and Ẽ = KT,SC + D.
Similarly to (WCE), we define ψST (KT,S) to be the worst case error of KT,S given the uncertainty
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set Ω̃ derived from ΩST . The optimal filter for this setting is given by the solution of the following
fixed size (independent of T ) optimization problem

min
KT,S

ψST (KT,S), (RP)

which can be solved using the same methods for solving problem (P), shown in Sect. ??.
In order for the uncertainty set ΩST to be well defined we need a procedure for calculating the

matrices Σδt and Σzt at each point in time. Since the tightness of the worst case approximation
ψST (KT,S) is dependent on the tightness of ΩST , these matrices should define ellipsoids which
are as small as possible. One way of representing the size of an ellipsoid is by the trace of its
defining matrix. Hence, we employ trace minimization in order to minimize the ellipsoid’s size.
We now turn our attention to describing a method of finding matrix Σδt (which can also be
easily extended for Σzt). We first show that a close to optimal Σδt can be obtained using a
convex problem, and then proving that this convex problem has an analytic solution.

Proposition 5 Let χ ∈ Ω̃ be the normalized uncertainty vector, and let Ẽ a matrix such that
δT = Ẽχ. Let Σ∗ denote the matrix with the smallest trace such that δTΣ

∗−1
δT ≤ 1 for all

χ ∈ Ω̃ and let Σ� be the solution to the following SDP optimization problem:

min
Σ∈Rr×r,µ∈Rm

Tr(Σ)

s.t.

 m∑
i=1

µiIi Ẽ′

Ẽ Σ

 � 0, e′µ ≤ 1.
(SVE)

then Tr(Σ∗) ≤ Tr(Σ�) ≤ π
2 Tr(Σ∗).

Proof Matrix Σ∗ is the solution of the following semi-infinite optimization problem.

min
Σ�0,

Tr(Σ)

s.t. χ′Ẽ′Σ−1Ẽχ ≤ 1 ∀χ ∈ Ω̃.
(22)

The constraints can be rewritten as σ(Σ) ≤ 1 where

σ(Σ) = max
χ∈Ω̃

χ′Ẽ′Σ−1Ẽχ.

Using the dual of the SDR of the problem, similarly to (DSDR-P), and applying the SDR
approximation property presented in (13), we obtain:

σ(Σ) ≤ min
µ∈M(Σ)

e′µ ≤ π

2
σ(Σ), M(Σ) = {µ :

m∑
i=1

µiIi − Ẽ′Σ−1Ẽ � 0}.

Replacing σ(Σ) by e′µ, adding constrain µ ∈ M(Σ), and applying the Schur complement
lemma results in problem (SVE). If Tr(Σ∗) = Tr(Σ�) the claim is proven. Otherwise, Σ∗ is not
a feasible solution for problem (SVE), and therefore for µ∗ ∈ arg minµ∈M(Σ∗) e′µ it must hold
that e′µ∗ > 1. Moreover, since Σ∗ is optimal for problem (22) it also satisfies σ(Σ∗) ≤ 1 and
consequently

1 < e′µ∗ ≤ π

2
σ(Σ∗) ≤ π

2
.

The definition of M and µ∗ imply 2
πµ
∗ ∈ M(π2Σ

∗) and it follows that π
2Σ
∗ is feasible for

problem (SVE). Since Σ� is optimal for problem (SVE) it is also feasible for problem (22) and
therefore, Tr(Σ∗) ≤ Tr(Σ�) ≤ Tr(π2Σ

∗) = π
2 Tr(Σ∗). ut
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Theorem 3 Let Ẽ ∈ Rr×n be a matrix such that Ẽ 6= 0, and let J0 = {i ∈ [m] : ‖IiẼ′‖F 6= 0}
where, ‖·‖F denoted the Frobenius norm. The optimal solution to problem (SVE) with parameter
matrix Ẽ is given explicitly by:

Σ� =

(
m∑
i=1

∥∥∥IiẼ′∥∥∥
F

)
Ẽ

∑
i∈J0

1∥∥∥IiẼ′∥∥∥
F

Ii

 Ẽ′, µ�i =

∥∥∥IiẼ′∥∥∥
F

m∑
i=1

∥∥∥IiẼ′∥∥∥
F

, i ∈ [m] (23)

and can be computed in O(n2r2) operations.

The proof is given in appendix C.
We refer to the filter, resulting from the SDR of problem (RP), as the Rolling GAARF

with horizon length S (RGAARF -S). Algorithm 1 summaries the procedure which generated
RGAARF -S for a given S.

Algorithm 1 RGAARF -S
For T = 1, 2, . . .

(1) Compute the optimal ΣzT for problem (SVE) using equation (23) with Ẽz derived from ÂT .
(2) Construct matrices C and D using the ellipsoid matrices defined in ΩS

T and the appropriate coefficients
derived from AT .

(3) Solve the SDR of problem (RP), given in (DSDR-P), and obtain the optimal K∗T,S using the interior point
algorithm described in appendix A.

(4) Use K∗T,S to update AT and ÂT+1 as described in appendix D.

(5) Compute the optimal ΣδT for problem (SVE) using equation (23) with Ẽ = K∗T,SC + D.

Notice that for each T three optimization problems (computing KT,S , ΣδT and ΣzT ) are
solved, each with a constant problem size of n ≈ O(S). Therefore, this procedure guarantees a
good worst case performance of K∗T,S while ensuring fixed computational cost per time step.

When the solution of problem (SVE) generates a matrix Σ which is PSD instead of PD, the
ellipsoid obtained is degenerate. We can project the ellipsoid constraint to a lower dimension.
Using the normalized vectors, this can be done by eliminating (nullifying) the appropriate indices
(corresponding to zero eigenvalues) . The problem can therefore be solved in this lower dimension,
and the worst case noise vector can be retrieved by using the Moore-Penrose pseudoinverse instead
of the regular inverse. Therefore, both problems (RP) and (SVE) are well defined regardless of
the invariability of Σ.

There is clearly a trade-off between accuracy of our solution and problem size. The main
drawback of using this method is the loss of information, which may cause an even higher
overestimation of the worst case (in addition to the SDR approximation), thus avoiding the
curse of dimensionality comes with a price. Therefore, an crucial part of the implementation is
the decision on the value of S. Choosing S = T will result in the GAARF , while choosing S = 1
will result in the classical one-step update SVE. In the next section we will show experimental
results pertaining to the algorithms we presented and investigate the choice of S and its impact
on the algorithm’s performance.

5 Experimental Results for The Tracking Problem

In this section we address the tracking problem presented in Sect. 2 and compare the performance
of the KF to the robust filters:GRF ,GAARF and RGAARF . We also investigate the implication
of the adjustable horizon S of RGAARF on its performance and computational cost.
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We consider tracking an object moving in an unconstrained, two dimensional plain. Let
xt = (x1

t ,x
2
t ) denote the object’s state vector, where x1

t ∈ R2 is a two dimensional position of the
object at time t, x2

t ∈ R2 is a two dimensional velocity of the object at time t, and the system
noise at ∈ R2 is the object’s acceleration in some (unknown) direction. Furthermore, only the
location of the object is observed, and at each point in time the measurement yt ∈ R2 is afflicted
with measurement noise vt ∈ R2. The system’s dynamics and observation processes are given by
the equations in (1) with matrices:

Ft =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 , Gt =


∆t2

2 0

0 ∆t2

2
∆t 0
0 ∆t

 , Ht =

[
1 0 0 0
0 1 0 0

]

where wt = Gtat and ∆t is the time difference between the point t+ 1 and point t.
In our example, we aim at estimating the object’s location and velocity based on the following

assumptions and data:

• Measurements are obtained every ∆t = 1sec.
• The acceleration at is bounded by ‖at‖ ≤ amax for αt = amax = 2m/sec2, and therefore

Qa
t = I and Qt = G′tGt.

• The measurement noise is contained in some known ellipsoid which is defined by matrix
Rt = I and size vmax = βt = 20m. Since the assumption of adversarial measurements is
not necessarily realistic we may assume alternatively that the measurements are indeed of
a statistical nature with mean zero and covariance R ≡ Rt and such that β ≡ βt, ensures
that the noise is inside the defined ellipsoid with high probability. This can be explained by
using the multivariate Chebyshev inequality [19] for the Mahalanobis distance MahalR(vt) =
vtR

−1vt to obtain:

Prob(vtR
−1vt > β2) ≤ d

β2

where vt ∈ Rd (in our case d = 2). If we further assume that vt has a Gaussian distribution,
then we can conclude that MahalR(vt) has Chi-square distribution with d degrees of freedom.

• Initially the object starts its movement from some unknown point which is assumed to be
within a 20m radius of point (0, 0) (initial detection) and moves with unknown velocity which
is at most 10m/sec. Therefore, the initial estimation error is constrained by ‖δ1

0‖ ≤ 20m and
‖δ2

0‖ ≤ 10m/sec.
• The object is observed for a duration of T = 50 seconds.

All the experiments hereinafter were conducted on a 64Bit Intel Core i5-M3340 at 2.7GHz
with 8GB RAM. The code was ran using MATLAB v2010a.

We will use this example to compare the GRF , and GAARF to the classical KF. To do
so we must first decide which KF to use. We chose five different KFs, each corresponding to
covariances matrices R and Qa which ensure (via Mahalanobis distance) that the probability of
a and v being inside the above defined ellipsoids is 0.5, 0.7, 0.8, 0.9 and 0.99. We first compared
the Theoretical Worst Case Error (TWCE) for each filter, for each time step, given by the SDP
relaxation. To verify that this is not a mere upper bound, but the actual worst case performance,
we obtained a lower bound using the LGA algorithm (described in [28]). Indeed, for all instances
(all filters and all time steps) the SDP solution was (up to precision of 10−3) the actual worst
case value. The result are presented in Fig. 2.

The GAARF worst case error norm was around 23.7 for the entire scenario (reaching a high
of 25.6 in the 3rd time step), while all of the KFs had a worst case of more then 48 (in steady
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state). Furthermore, we see that while both the KF and GAARF reach a steady state, where the
worst case estimation error is constant, GRF does not, and it exhibits high volatility and worst
case which is not much better than that of the KFs. We attribute this volatility to the inability
of the GRF to correct past decisions, due to lack in degrees of freedom.

In order to test this theoretical performance we conducted two sets of experiments, so that
at each point in time the acceleration and measurement noise are chosen at random:

1. Adversarial object and measurement behavior - The directions of the acceleration, measure-
ment error and initial estimation error are chosen uniformly at random at each point in time,
while the magnitude is the maximum allowed. For example, ‖at‖ = amax for all t but at each
point in time we chose the acceleration direction.

2. Adversarial and purposeful object and random measurements - This Scenario depicts an
adversarial object with a specific purpose, accelerating in a certain direction for the entire
scenario. The directions and magnitude of the measurement error and initial estimation error
are chosen uniformly at random for each point in time. The acceleration direction is chosen
uniformly at random once, at the beginning of the scenario, and proceeds in that direction
for the rest of the scenario with maximal magnitude.

These scenarios refer to cases which are not purely random, since purely random scenarios will
correspond with the assumptions for which KF is optimal. Furthermore, in this scenario, the
filter will rarely encounter a realization of the noise vector which will produce a high estimation
error. Moreover, as we stated in the introduction, assuming a randomly moving target is not
realistic for the problem of target tracking.

We compare the simulation results for each filter f , each time step t and each simulation i.
Denoting the real state of the system (ground truth) as xt,i and the filter estimation as x̂t,i(filter)
we calculated the Simulated Error (SE):

SEit(f) = ‖xt,i − x̂t,i(f)‖.

The KF performance was consistent and similar for all values of the five chosen probabilities.
Therefore, only the filter with the best performance, which is the KF with probability of p = 0.8,
is shown from now on. The mean and maximal SE values for each filter in each time step are
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presented in Fig. 3. The GRF exhibited the same unstable behavior as in the theoretical results
and was generally inferior both to the KF and GAARF and therefore was omitted from the
figures. The GAARF is better at protecting against worst case results for both scenarios, giving
it a clear advantage over the KF, with error values 20% lower for the first scenario (Fig. 3a) and
up to 30% lower for the second scenario (Fig. 3b). We would expect that the average performance
of the KF would be superior, since it is designed to minimize mean performance. However, in
the second scenario, presented in Fig. 3b, the KF exhibits inferior performance with mean error
of 20 vs. 12 for GAARF . This is due to the fact that the KF noise assumptions do not hold in
this case, and therefore the KF is not optimal even for the average case.

To better understand the differences between the KF and GAARF performance we looked at
the KF worst case scenario. In Fig. 4 we see the spatial 2D location of the object and the filters’
location estimation for various time steps. The dot indicates the actual location of the object,
the ’x’ marks the KF predicted location and the ’+’ the GAARF prediction. Furthermore, we
calculated the 95% confidence level for the KF, derived from its estimation error covariance
matrix, shown as a dashed line, and for both filters we calculated the true estimation set derived
from the worst case (through SDP relaxation as shown in Sect. 4.2), presented as a full line.
Firstly, observe that the KF 95% confidence interval until time t = 8 is an over-estimation of
the true estimation set, and later an under-estimation. Therefore, any arbitrary confidence level,
chosen in advance, may lead to either an over-estimation or an under-estimation, and in some
cases such as at time steps 22, 36 and 50, an incorrect confidence interval may cause us to lose
the object. Moreover, both the confidence interval and the true estimation set of the KF are
much larger than the estimation set of the GAARF , which always captures the ground truth.
Specifically, for t = 50 the Kalman filter has a confidence interval and estimation set radius of
about 40 and 47m respectively, while for the GAARF it is only 20m. We can conclude that the
GAARF worst case estimation is closer to the true object location, and that the estimation set
it provides is equivalent to a 100% confidence interval, guaranteeing that the true object location
is within the set.

As mentioned earlier, the problem with GAARF is that its computational complexity in-
creases with time. Looking at the rolling horizon filter RGAARF we examine the trade off
between computational complexity per iteration and performance. RGAARF was ran using five
rolling time-window sizes of 1,2,5,10, and 20 seconds. Recall that RGAARF -50 is equivalent to

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

50

Time (sec)

Si
m

ul
at

ed
 E

rr
or

(a) Adversary

 

 

0 5 10 15 20 25 30 35 40 45 50
5

10

15

20

25

30

35

40

45

50

Time (sec)

Si
m

ul
at

ed
 E

rr
or

(b) Adversary/Random

 

 
GAARF − mean
GAARF − max
KF p=0.8 − mean
KF p=0.8 − max

Fig. 3 Kalman vs. Robust - Simulated Error



24 S. Shtern, A. Ben-Tal

−100

−50

0

50

100
t=1

 

 

Ground truth KF estmation GAARF estimation

t=8

 

 

KF 95% confidence KF estmation set GAARF estimation set

t=15 t=22

−50 0 50

150

200

250

300

t=29

−50 0 50

t=36

−50 0 50

t=43

−50 0 50

t=50

Fig. 4 Location Estimation KF vs. GAARF

GAARF , and that RGAARF -1 is equivalent to classical SVE. Fig. 5 presents the computational
time per time step for each of these filters. As we expected the steady state time (starting from
2S) increase as the horizon becomes longer, and the GAARF takes at least an order of magnitude
longer (for time step 50) than the all the RGAARF . We omitted the running times for S = 2
since they were similar to that of S = 1.

To investigate whether the algorithm’s performance deteriorates with the length of the horizon
we look at the Theoretical Worst Case Error Ratio (TWCER) for each filter f at each time step
t, defined by:

TWCERt(f) =
TWCEt(f)

TWCEt(GAARF )
.

More specifically, for each filter we looked at the TWCE upper bound, which is generated while
computing the filter, and at the actual TWCE, taking into account the entire noise vector. Notice
that for GAARF both bounds are identical. The results are given in Fig. 6. It is not clear that
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longer horizons are indeed better, since it is debatable weather RGAARF -20 indeed performs
better than RGAARF -10. Comparing Fig. 6a and Fig. 6b, we observe that the upper bounds
obtained for TWCE are not tight and, as expected, is looser as the horizon length becomes
shorter. Moreover, these filters exhibit a recurring pattern in their performance where the cycle
length is determined by the horizon length. The seemingly stable behavior of the filters with
horizon length 1 and 2 is actually a pattern with short cycle length. Surprisingly, RGAARF -1
is more stable and performs better than the GRF , although it uses less information.

Therefore in theory, RGAARF -10 achieves the best balance between estimation set accuracy
and information loss, thus obtaining a relatively stable filter. This filter is computed in less than
a quarter of a second per time step, and it guarantees theoretical worst case performance which
deviates at most 9% from that of the GAARF .

Simulation results comparing the various rolling horizon filters and GAARD support this
assertion. More specifically, in the adversarial and random scenarios the mean performance of all
RGAARF was close to that of GAARF and for the adversarial-random scenario RGAARF -1
and 2 actually had better average performance while the average performance of RGAARF -10
was up to 14% worse, and RGAARD-20 up to 40% worse. However, worst case performance of
short horizon filters was 5%−10% worse than the GAARF while longer horizon filters, displayed
performance close to that of GAARF .

In conclusion, for the tracking application, using RGAARF -10 rather than GAARF will
have the advantage of maintaining the same performance both theoretically and practically,
while reducing the running time significantly. The worst case performance for both adversarial
or partly adversarial scenarios is better than that of the KF.

The results presented here were essentially replicated when we changed the maximum mea-
surement error to 30m and the maximum initial velocity error to 5 m

sec .

6 Summary

In this paper we presented a new SDP based set-estimation approach for robust estimation
focusing mainly on for the case of tracking. We developed numerical algorithms to solve the
resulting optimization problems for the case of bounded uncertainty. These solutions provide
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good approximations for worst case performance, when the filter matrices are given, and for
the optimal robust filter. Our basic approach works well for multi-period problems, however the
computational cost increases with the time step. Therefore, a rolling horizon, with fixed window
size, is used to achieve a fixed computational cost per time step, and can be tuned to work well
both in theory and in practice. Finally, we showed how to extend this approach to include both
random and bounded noise, thus generalizing the KF for expected worst case.

Future research may consider incorporating knowledge on a partially bounded state vector
into this scheme, and exploring the advantages and disadvantages of using different estimation
error measures.

Appendix A Implementation of HRVW-alg to saddle point problem

Consider problem (DSDR-P) with parameters C ∈ Rq̃×n and D ∈ Rr×n, and Ii ∈ Rn×n i =
1, . . . ,m, and decision variables Let K ∈ Rr×q̃, µ ∈ Rm (we negate non-negativeness of µ since
µ must be non-negative in order to satisfy the constraints), where r and q are and therefore
O(q̃) = O(m) = O(n) = O(T ). We add variable Z ∈ R(n+r)×(n+r) such that:

Z =

[∑m
i=1 µiIi D′ + C′K′

KC + D I

]
, Z � 0.

This problem satisfies the Slater condition for K = 0 and µi ≡ α = ‖D‖2 + 1 ∀i = 1, . . . ,m
since appropriate Z is PD and so the problem is regular.

Defining the dual variable Y to be a symmetric matrix such that

Y =

[
Y11 Y12

Y21 Y22

]
� 0,

we can then formulate the following dual problem.

max
Y

Y ◦
[

0 −D′

−D −I

]
= −2Y12 ◦D′ − I ◦Y22

s.t.

Ĩi ◦Y = Ii ◦Y11 = 1 i = 1, . . . ,m

C̃ij ◦Y = 2C̃ij ◦Y12 = 2Ci·Y
12
·j = 0 i = 1, . . . , q̃, j = 1, . . . , r

Y � 0

(24)

where matrices Ĩi and C̃ij are given by:

Ĩi =

[
Ii 0
0 0

]
, C̃ij =

[
0 C̃ij

(C̃ij)′ 0

]
, C̃ij ∈ Rn×r : C̃ijkl =

{
Cik l = j

0 otherwise
.

We can see that this problem also satisfies the Slater conditions, since strict feasibility hold
for Y such that Y12 = 0, Y11 = Diag(

∑m
i=1

1
ni
Iie) and Y22 = I. Strict feasibility of both primal

and dual problem ensure strong duality, and therefore a duality gap of zero.
Notice that the second set of constraints is actually equivalent to C′ ·Y = 0, where 0 here

denotes an q̃ × r matrix of all zeros. Therefore, if q̃ ≥ n and rank(C) = n for any feasible
solution Y12 = 0 holds and the optimal solution satisfies Y22 = 0, for any feasible Y11 and
the problem value is zero. This also means that µ = 0 and K is simply some solution for the
equation KC + D = 0. If rank(C) < n, we can take only the set of linearly independent rows of
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C and corresponding columns of K thus having C of full row rank and q̃ < n. Therefore, without
loss of generality we can assume q̃ < n.

Since strong duality holds an optimal solution can be found using the HRVW−alg algorithm
based on [13]. HRVW −alg conducts interior point iterations in order to reduce the duality gap.
In order to do so we have to define a linear operator B(Y) : R(n+r)×(n+r) → Rm+rq such that
B(Y) = [B1(Y), . . . , Bm+rq(Y)] where Bj(Y) = Bj ◦ Y. In our case, denoting the subsets of
indexes J1 = {1, . . . ,m}, J2 = {m+ 1, . . . ,m+ rq} we have that:

Bi =

{
Ĩi i ∈ J1

C̃kl i ∈ J2, l = b i−m−1
q̃ c+ 1, k = i−m− (l − 1)q̃

. (25)

Its adjoint B′(y) : Rm+rq → R(n+r)×(n+r) where y = (µ,K), is then defined as:

B′(K,µ) =

[∑m
i=1 µiIi C′K′

KC 0

]
. (26)

We can now write the primal and dual problems as:

max
Y

A ◦Y max
y

b′y

(P ) s.t. B(Y) = b (D) s.t. B′(y)−A � 0

Y � 0 ,

The algorithms consists of several stages:

Algorithm 2 Obtaining Saddle Point by HRVW Scheme

Initialization Y0, K0, µ0, y0 = (µ0,K0) and Z0 such that they are strictly feasible for primal and dual problem
respectively . Set k = 0.
While Zk ◦Yk > ε

(1) Calculate γk = Zk◦Yk
2(n+r)

(2) Calculate the slack matrix Zk and its inverse Wk = (Zk)−1.
(3) Calculate positive definite matrix Pk ∈ R(m+rq)×(m+rq), where Pk

ij = Tr(BiW
kBjY

k).

(4) Calculate vector vk = γkB(Wk)− b.
(5) Calculate ∆y = (∆µ,∆K) be the solution of the system vk = Pk∆y.
(6) Update ∆Z = B′(∆y) and ∆Y = γkWk −Yk + WkB′(∆y)Yk.
(7) Find αP and αD such that: Yk+1 + αP∆Y � 0 and Zk+1 = Zk + αD∆Z � 0 by line search.
(8) Update Kk+1 = Kk + αD∆K and µk+1 = µk + αD∆µ
(9) Update k ← k + 1.

End While
Return (Y∗,µ∗,K∗) = (Yk,µk,Kk).

We can clearly see that the computational costs consist of inverting Z, computing P , cal-
culating B(W), inverting P , computing B′(y), checking whether Y and Z are positive definite
and finally computing the duality gap. The inversion of Z as well as checking whether Y and Z
are positive definite, can be done by Cholesky decomposition and takes O((n+ r)3) operations.
Calculation of B(W) takes only O(n+ rq̃n) operations, since Bi(W) for each i ∈ J1 takes O(ni)
operations and Bi(W) for each i ∈ J2 takes O(n) operations. Calculation of B′(y) takes O(rq̃n)
to calculate the off diagonal blocks and O(n) to compute the diagonal. Calculating the duality
gap takes O((n + r)2) operations and inverting P takes O((m + rq̃)3). Since O(q̃) = O(n) this
is equivalent to all these operations being done in O(n3). The only potentially computational
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problematic operation in computing P , which consists of computing the matrices BiW and BiY
for every i ∈ J1

⋃
J2. Computing BiW takes up to O((n + r)3) operations for each i, and so

we have O(m + rq̃) such multiplications, resulting in potentially up to O(n4) operations. We
will now prove that the special structure of Bi ensure that this is not the case and P can be
computed in O(n3) as well.

From symmetry of W, Bi and Y can conclude that P is a symmetric matrix with entries
defined as follows.

Pij = Tr(BiWBjY) = W ◦BjYBi = Tr(W(BjYBi)
′) = W ◦BiYBj .

We will now compute BjYBi for each i and j and calculate the computational complexity. We
look at each combination of i, j:

1. i, j ∈ J1: we have that Pij = IiW11Ij ◦ IiY11Ij which is the inner product of block i, j of
the (·)11 block in each of the matrices. So to compute the whole m×m sub-matrix {Pij}i,j∈J1
we need O(n2) operations.

2. i ∈ J1 and j ∈ J2: We denote l = b j−m−1
q̃ c+ 1, k = j −m− (l − 1)q̃ (or vice versa) we have

that

ĨiYC̃
kl

=

[
IiY11 IiY12

0 0

]
C̃kl =

[
IiY12(C̃kl)′ IiY11C̃kl

0 0

]
.

The matrix IiY11C̃kl has only ni non zeros elements, in indexes corresponding to rows in
partition element i and column l. Each of these elements can be calculated by Y11

s· C
′
k·, where

s is in partition element i, and so the total number of operations needed for the computation
is O(nni). The matrix IiY12(C̃kl)′ has only ni non zero rows of length n each, where each
row can be calculated as the product: Y 12

sl Ck·. Therefore, the total number of operation to
compute this matrix is O(nni). The multiplication with W includes multiplying only the
non zero elements and therefore takes O(ni(n + r)) operations. Consequently computing

{Pij}i∈J1,j∈J2 requires
∑m
i=1

∑m+rq̃
j=m+1O(ni(n+ r)) = O(n(n+ r)rq̃) = O(n3).

3. i, j ∈ J2: Denoting l1 = b i−m−1
q̃ c+ 1, k1 = i−m− (l1 − 1)q̃, l2 = b j−m−1

q̃ c+ 1, and

k2 = j −m− (l2 − 1)q̃ we have that:

C̃k1l1YC̃k2l2 =

[
C̃k1l1Y21 C̃k1l1Y22

(C̃k1l1)′Y11 (C̃k1l1)′Y12

]
C̃k2l2 =

[
C̃k1l1Y22(C̃k2l2)′ C̃k1l1Y21C̃k2l2

(C̃k1l1)′Y12(C̃k2l2)′ (C̃k1l1)′Y11C̃k2l2

]
.

Notice the following:
– The first matrix C̃k1l1Y22(C̃k2l2)′ = Y 22

l1l2
C′k1·Ck2·.

– Matrix (C̃k1l1)′Y11C̃k2l2 is a zero matrix with one non zero element in (l1, l2) with value
Ck1·Y

11C′k2·.

– Matrix C̃k1l1Y21C̃k2l2 will have non-zero entries only in column l2 which will equal
C′k2·(Y

21
l1·C

′
k1·). Similarly, we have (C̃k1l1)′Y12(C̃k2l2)′ = (C̃k2l2Y21C̃k1l1)′ which means

that only the l1 row is non-zero with value Ck1·(Y
21
l2·C

′
k2·).

Therefore, from symmetry of W the total calculation sums up to:

Tr(WC̃k1l1Y C̃k2l2) = Y 22
l1l2(Ck2·W

11C′k1·) +W 22
l1l2(Ck1·Y

11C′k2·)

+ (W21
l2·C

′
k2·)(Y

21
l1·C

′
k1·) + (W21

l1·C
′
k1·)(Y

21
l2·C

′
k2·)

(27)

Both W11C′k1· and Y11C′k1· can be computed once for every k1 at a total cost of O(n2q̃) =
O(n3), creating 2q̃ vectors of length n. Multiplying each of this vectors by each C′k2· takes
O(nq̃2) = O(n3). Finally multiplying these q̃2 results by the appropriate scalars Y 22

l1l2
and

W 22
l1l2

for each combination of (l1, l2) takes O(r2q̃2) operations. Similarly, computing W21
l· C′k·
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and Y21
l· C′k· takes total of O(rq̃n) for all combinations of l and k, resulting in rq̃ scalars each.

The multiplication of all combinations of this scalars costs O(r2q̃2) = O(n2). Therefore, we
can compute {Pij}i,j∈J2 in O(n3) operations.

Accordingly, the total computational cost of constructing P is O(n3).
In conclusion, the computational cost of solving problem (DSDR-P) each step of the interior

point algorithm 2 isO((n+rq̃)3) operations per iterations andO(
√
n+ r log

(
Tr(Z0Y0)

ε

)
) iteration

to obtain duality gap of ε.

Appendix B Implementation of HRVW-alg to worst case expectation
minimization approximation problem

Consider problem (α-SDP-EP) where objective function is divided by the constant (1 + 1
α ). We

denote

Z1 =

 m∑
i=1

µiIi (KC1 + D1)′

(KC1 + D1) I

 , Z2 =

[
U (KC2 + D2)

(KC1 + D1)′ I

]
, Z =

[
Z1 0

0 Z2

]
, Z � 0

Defining the dual variable Y to be a block diagonal matrix, with blocks Y1 ∈ R(n̄1+r)×(n̄1+r)

and Y2 ∈ R(r+n̄2)×(r+n̄2) which themselves are separated to blocks.

Y =

[
Y1 0
0 Y2

]
, Y1 =

[
Y1

[11] Y1
[12]

Y1
[21] Y1

[22]

]
� 0, Y2 =

[
Y2

[11] Y2
[12]

Y2
[21] Y2

[22]

]
� 0,

we can formulate the following dual problem.

max
Y1,Y2

−2Y1
[12] ◦D1′ − I ◦Y1

[22] − 2Y2
[12] ◦D2 − I ◦Y2

[22]

s.t.

Ĩi ◦Y ≡ Ii ◦Y1
[11] = α i = 1, . . . ,m

C̃1ij ◦Y1 + C̃2ij ◦Y2 = 2C̃1ij ◦Y1
[12] + 2C̃2ij ◦Y2

[12] = 0 i = 1, . . . , q, j = 1, . . . , r

Iij ◦Y2 ≡ (Y 2
[11])ij = 1j(i) i, j = 1, . . . , r

Y1 � 0

Y2 � 0

(28)

where 1j(i) is the Dirac measure, and matrices Iij , Ĩi and C̃`ij , C̃1ij ∈ Rn̄1×r and C̃2ij ∈ Rr×n̄2

are given by:

Ĩi =

[
Ii 0
0 0

]
, C̃`ij =

[
0 C̃`ij

(C̃`ij)′ 0

]
, ` = 1, 2

Iijkl =

{
1 k = i, l = j

0 otherwise
, C̃1ij

kl =

{
C1
ik l = j

0 otherwise
, C̃2ij

kl =

{
C2
il k = j

0 otherwise
.

Both primal and dual problem are strictly feasible with K = 0, µ = (‖D1‖2 + 1)e and

U = (‖D2‖2 + 1)I for the primal and Y1
[11] =

m∑
i=1

α
ni
Ii, Y1

[22] = I, Y1
[12] = 0, Y2 = I for the dual

problem, and therefore strong duality holds, and the interior point method can be utilized.
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In order to solve this problem via interior point method, we need to formulate linear operator
B and its adjoint B′. To do so, we will first define three index sets J1 = {1, . . . ,m}, J2 =
{m + 1, . . . ,m + q̃r} and J3 = {m + q̃r + 1, . . . ,m + q̃r + r2}. The linear operator can then be
written as

B(Y ) = B(Y1,Y2) = [B1(Y1,Y2), . . . , Bm+q̃r+r2(Y1,Y2)]

where Bi(Y
1,Y2) = Tr(B1

iY
1) + Tr(B2

iY
2) such that

B1
i =


Ĩi i ∈ J1

C̃1kl
i ∈ J2, l = b i−m−1

q̃ c+ 1, k = i−m− (l − 1)q̃

0 i ∈ J3

. (29)

B2
i =


0 i ∈ J1

C̃2kl
i ∈ J2, l = b i−m−1

q̃ c+ 1, k = i−m− (l − 1)q̃

Ikl i ∈ J3, l = b i−m−q̃r−1
r c+ 1, k = i−m− (q̃ + l − 1)r

. (30)

The adjoint operator is B′(K,U ,µ) ≡ Z where Z is defined above.
According to algorithm 2 the most computationally expensive stage in the interior point

algorithm consist of constructing matrix P and inverting it, since all other calculation take at
most O((n̄1 + n̄2 + 2r)3) = O(n+ 2r)3 operations. We will show that this construction also takes
O(n)3 operations.

We can separate the constructing of matrix P to several parts. For this purpose we will first

denote W = Z−1 as a block diagonal matrix with blocks W1 = Z1−1
and W2 = Z2−1

. An
important observation is that the construction of matrixP can be separated into two independent
calculations:

Pij = W ◦BjYBi = W1 ◦B1
jY

1B1
i + W2 ◦B2

jY
2B2

i = W ◦BiYBj = Pji.

The first term of the calculation is identical to the terms calculated in appendix A (or is equal to
zero when either i or j are in J3) and therefore costs O(n̄3

1) to calculate for all i,j. Consequently,
we will focus on the computational complexity of the second term:

1. ∀i ∈ J1 or j ∈ J1. The term is identically zero therefore doesn’t need to be computed.
2. ∀i, j ∈ J2. We start by calculating B2

iY
2B2

j . Denoting, as before, l1 = b i−m−1
q̃ c + 1, k1 =

i−m− l1q̃, l2 = b j−m−1
q̃ c+ 1, k2 = j −m− l2q̃ We have that:

C̃2ij
Y2 =

[
C̃2k1l1Y2

[21] C̃2k1l1Y2
[22]

(C̃2k1l1)′Y2
[11] (C̃2k1l1)′Y2

[12]

]

and consequently

C̃2k1l1
Y2C̃2k2l2

=

[
C̃2k1l1Y2

[22](C̃
2k2l2)′ C̃2k1l1Y2

[21]C̃
2k2l2

(C̃2k1l1)′Y2
[12](C̃

2k2l2)′ (C̃2k1l1)′Y2
[11]C̃

2k2l2

]

C̃2k1l1Y2
[22](C̃

2k2l2)′ has only one component which is not zero in index (l1, l2) and its value

is C2
k1·Y

2
[22](C

2
k2·)
′. On the other hand (C̃2k1l1)′Y2

[11]C̃
2k2l2 = (Y2

[11])l1l2(C2
k1·)
′C2
k2·. Further-

more, only row l1 of matrix C̃2k1l1Y2
[21]C̃

2k2l2 is not zero, with value of (C2
k1·(Y

2
[21])·l2)C2

k2·,



An SDP Approach for Robust Tracking 31

and similarly only column l2 of matrix (C̃2k1l1)′Y2
[12](C̃

2k2l2)′ is not zero, with value

(C2
k1·)
′(Y2

[12])l2·)(C
2
k2·)
′. The inner product is, therefore, given by:

W2 ◦ C̃2k1l1
Y2C̃2k2l2

= (W 2
[11])l1l2C

2
k1·Y

2
[22](C

2
k2·)
′ + (Y 2

[11])l1l2C
2
k2·W

2
[22](C

2
k1·)
′

+ (C2
k1·(Y

2
[12])

′
l2·)(C

2
k2·(W

2
[12])

′
l1·) + ((W2

[12])l1·(C
2
k1·)
′)((Y2

[12])l2·(C
2
k2·)
′)

Calculating the first term for all k1 takes O(n̄2
2q̃) operations resulting in 2q̃ vectors of di-

mension n̄2. Multiplying these vectors with C2
k1· for all values of k1 takes O(q̃2n̄2) operations.

The last two terms can also be calculated in two stages, first constructing 2q̃r scalars for each
combination of k and l by multiplying the two appropriate vectors, at total cost of O(rq̃n̄2),
and then multiplying all combinations of these scalars costing O(q̃2r2) operations. Therefore
the total computational cost for this sub-matrix is therefore O(q̃n̄2

2 + n̄2q̃
2 + r2q̃2 + rq̃n̄2).

Since n̄2 ≤ n and since O(q̃) = O(n) we have that this is equivalent to O(n3)
3. ∀i ∈ J2 j ∈ J3. Denoting, as before, l1 = b i−m−1

q̃ c+1, k1 = i−m−(l1−1)q̃, l2 = b j−m−q̃r−1
r c+

1, k2 = j −m− (q̃ + l2 − 1)r, to obtain l1, l2, k2 ∈ [r] and k1 ∈ [q̃]. Notice that only column

l2 of matrix Y2Ik2l2 is non zero, with value
[
(Y2

[11])·k2 ; (Y2
[21])·k2

]
and therefore only the l2

column of matrix C̃2k1l1
Y2Ik2l2 is non zero. Consequently,

W ◦ C̃2k1l1
Y2Ik2l2 = (W 2

[11])l1l2C
2
k1·(Y

2
[21])·k2 + C2

k1·(W
2
[21])·l2(Y 2

[11])l1k2 .

Similarly to the previous case, assuming O(q̃) = O(n), this calculation can be done for all
such indexes in O(rn̄2q̃ + r3q̃) = O(n2) operations.

4. ∀i, j ∈ J3. In this case we denote l1 = b i−m−q̃r−1
r c + 1, k1 = i − m − (q̃ + l1 − 1)r, l2 =

b j−m−q̃r−1
r c+ 1, k2 = j −m− (q̃+ l2 − 1)r. According to the previous case we can conclude

that:

W ◦ Ik1l1Y2Ik2l2 = (W 2
[11])l2k1(Y 2

[11])l1k2 .

Obviously computing this for all relevant indexes takes O(r4).

Therefore, computing P in this case takes O(n3) operations.

Consequently, the interior point algorithm 2 implemented on problem (α-SDP-EP) takes
O(n3) per iteration and obtains an ε accurate solution in O(

√
n+ r log (1

ε )) iterations.

Appendix C Obtaining a solution to problem (SVE)

Given problem (SVE) we define additional variable Z as:

Z1 =

 m∑
i=1

µiIi Ẽ′

Ẽ Σ

 , Z2 = 1−
m∑
i=1

µi, Z =

[
Z1 0
0 Z2

]
, Z � 0,

Since Σ is defined to be symmetric it is represented by r(r + 1)/2 variables. Constructing the
problem dual via its Lagrangian.
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The dual problem is given by:

max
Y∈R(n+r)×(n+r),β∈R+

Y1 ◦
[

0 −Ẽ′

−Ẽ 0

]
− β = −2Y12 ◦ Ẽ′ − β

s.t.

Ii ◦Y11 − β = 0 i = 1, . . . ,m

Y22 = I

Y =

[
Y11 Y12

Y12′ Y22

]
� 0

(31)

Both primal and dual problem are strictly feasible with µ = e/n and Σ = Ẽ′(
∑
i µiIi)−1Ẽ + I

for the primal and Y11 =
∑
i Ii/ni, Y22 = I, Y12 = 0, β = 1 for the dual problem. Therefore,

strong duality holds for these problems.

Observe that since Y22 = I the PSD constraint on Y can be reformulated, using the Schur
complement, as Y = (Y11 −Y12Y12′) � 0. Moreover, any square sub-matrix on the diagonal of
Y is also PSD and therefore the first constraints can be reformulated as:

Tr(Y12′IiY12) = Y12Y12′ ◦ Ii ≤ β.

Defining kij j = 1, . . . , ni to be the jth index in the index set corresponding to partition element

i, we can define vector ζi = [ζ1
i , . . . , ζ

ni
i ]′ where ζji = Y12

kij ·
is the kij row of matrix Y12. Similarly,

we define ẽi = [ẽ1
i ; . . . ; ẽ

ni
i ] where ẽji = Ẽ·kij is the kij column of matrix Ẽ. Therefor, problem (31)

can be reformulates as follows.

max
β≥0

max
ζ

− 2

m∑
i=1

ζ′iẽi − β

s.t. ‖ζi‖2 ≤ β i = 1, . . . ,m

(32)

Since ‖ei‖ = ‖IiẼ‖F where ‖ · ‖F denotes the Frobenius norm, the definition of J0 can be
updated to J0 = {i ∈ {1, . . . ,m} : ‖ẽi‖ 6= 0}. Given known β the problem is separable in ζi, and
an optimal solution (not necessarily unique) is known to be

ζ∗i =

−
√
β ẽi
‖ẽi‖ i ∈ J0√

β
ni

otherwise
. (33)

Plugging this solution we obtain the following problem in variable β.

max
β≥0

2
√
β

m∑
i=1

‖ẽi‖ − β.

Since Ẽ 6= 0 the solution is obtained in a stationary point, i.e. when β = 1/(
∑m
i=1 ‖ẽi‖)

2
, in

either case the optimal objective function value is
∑m
i=1 ‖ẽi‖. Notice that if Ẽ = 0 the problem

becomes trivial with solution Σ = 0
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In order to retrieve the solution to the primal problem, we first look at the dual of prob-
lem (32), which is given by:

min
µ∈Rm+

∑
i∈J0

‖ẽi‖2

µi

s.t.

m∑
i=1

µi = 1

µi = 0 i /∈ J0.

(34)

The optimal solution to (34) is given, by the primal dual connection ẽi = ζiµi and the optimal
solution (33), to be

µ�i =
‖ẽi‖√
β

=
‖ẽi‖∑
i ‖ẽi‖

i = 1, . . . ,m.

Returning to problem (SVE) we obtain Σ � Ẽ′(
∑
i µiIi)−1Ẽ provided µi = 0 ∀i /∈ J0, and so

Tr(Σ) ≥
∑
i∈J0 ‖ẽi‖

2
/µi. Therefore, the optimal Σ for problem (SVE) is obtained when the

inequality is satisfied with equality, and is given by:

Σ� =

(
m∑
i=1

‖IiẼ‖F

)
Ẽ′

(∑
i∈J0

1

‖IiẼ‖F
Ii

)
Ẽ

with optimal value of Tr(Σ�) = (
∑m
i=1 ‖IiẼ‖F )2. The most computationally expensive operation

is the multiplication Ẽ′Ẽ which costs O(n2r2).
In conclusion, solving problem (SVE), including obtaining the optimal Σ� takes at most

O(n2r2) operations. Given r is constant and n ≤ Smaxi ni where maxi ni is constant, we obtain
computational complexity of O(S2).

Appendix D Rolling horizon objective function coefficients

Representing

δT = Aω
Tω

T−S
T + AZ

TZT−2S+2
T−S

≡ AδT−SδT−S +

T∑
t=T−S+1

Aat
T at +

T∑
t=T−S+1

Avt
T vt +

T−S∑
t=T−2S+2

Azt
T zt,

where the coefficient matrices are given by:

Aat
T =


FAat

T−1 −KT
THFAat

T−1 + Kt
THG−

T−1∑
τ=t+1

Kτ
THFAat

τ−1 max(T − S + 1, 1) ≤ t < T

(KT
THG−G) t = T, T ≥ 1

0 otherwise

Avt
T =


FAvt

T−1 −KT
THFAvt

T−1 + Kt
T −

T−1∑
τ=t+1

Kτ
THFAvt

τ−1 max(T − S + 1, 1) ≤ t < T

KT
T t = T, T ≥ 1

0 otherwise
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Aδt
T =


FAδt

T−1 −
T∑

τ=t+2
Kτ
THFAδt

τ−1 max(T − S, 0) ≤ t < T − 1

F−KT
THF t = T − 1

0 otherwise

Lzt,j
T =


Kt
T −

T∑
τ=t+j

HFLzt,j
τ−1 max(T − S + 1, 1) ≤ t ≤ T − 1, 1 ≤ j ≤ T − t

FLzt,j
T−1 −

T∑
τ=max(T−S,t+j)

HFLzt,j
τ−1 max(T − 2S + 2, 1) ≤ t ≤ T − S, 1 ≤ j ≤ S − 1

0 otherwise

Azt
T =

FLzt,j
T −

T∑
τ=T−S+1

HFLzt,j
τ−1 max(T − 2S + 2, 1) ≤ t ≤ T − S, j = T − S − t+ 1

0 otherwise.

Similarly we can represent

zT = Âω
Tω

T−S
T + ÂZ

TZT−2S+2
T−S ≡ ÂδT−SδT−S +

T∑
t=T−S+1

Âat
T at + Âvt

T vt

where:

Âat
T =


−HFAat

T−1 max(T − S + 1, 1) ≤ t < T

HG t = T, T ≥ 1

0 otherwise

Âvt
T =


−HFAvt

T−1 max(T − S + 1, 1) ≤ t < T

I t = T, T ≥ 1

0 otherwise

Âδt
T =


−HFAδt

T−1 max(T − S, 0) ≤ t < T − 1

−HF t = T − 1, T ≥ 1

0 otherwise

Âzt
T =

{
−HFAzt

T−1 max(T − 2S + 2, 1) ≤ t ≤ T − S
0 otherwise
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and applications. Birkhäuser, Boston, MA, USA (1997)

16. Masreliez, C.: Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans.
Autom. Control 20(1), 107–110 (1975)

17. Masreliez, C., Martin, R.: Robust bayesian estimation for the linear model and robustifying the kalman filter.
IEEE Trans. Autom. Control 22(3), 361–371 (1977)

18. Nagpal, K.M., Khargonekar, P.P.: Filtering and smoothing in an H infinity setting. IEEE Trans. Autom.
Control 36(2), 152–166 (1991)

19. Navarro, J.: A very simple proof of the multivariate chebyshev’s inequality. Communications in Statistics -
Theory and Methods (2013). DOI 10.1080/03610926.2013.873135

20. Nemirovski, A.: Prox-method with rate of convergence o(1/t) for variational inequalities with lipschitz con-
tinuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251
(2004)

21. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods Softw. 9(1-3),
141–160 (1998)

22. Nesterov, Y.: Dual extrapolation and its applications to solving variational inequalities and related problems.
Math. Programming 109(2-3), 319–344 (2007)

23. Nishimura, T.: On the a priori information in sequential estimation problems. IEEE Trans. Autom. Control
11(2), 197–204 (1966)

24. Sasa, S.: Robustness of a kalman filter against uncertainties of noise covariances. In: American Control
Conference, 1998. Proceedings of the 1998, vol. 4, pp. 2344–2348 vol.4 (1998)

25. Sayed, A.: A framework for state-space estimation with uncertain models. IEEE Trans. Autom. Control
46(7), 998–1013 (2001)

26. Schweppe, F.: Recursive state estimation: Unknown but bounded errors and system inputs. IEEE Trans.
Autom. Control 13(1), 22–28 (1968)

27. Shaked, U., Theodor, Y.: H∞-optimal estimation: a tutorial. In: Decision and Control, 1992., Proceedings of
the 31st IEEE Conference on, vol. 2, pp. 2278 –2286 (1992)

28. Shtern, S., Ben-Tal, A.: Algorithms for solving nonconvex block constrained quadratic problems. Tech. Rep.
Technion Report IE/OR-2013-01, Technion - Israel Instutute of Technology (2013)

29. Simon, D.: Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches. Wiley-Interscience,
Hoboken, NJ, USA (2006)

30. Tsai, C., Kurz, L.: An adaptive robustizing approach to kalman filtering. Automatica 19(3), 279–288 (1983)
31. Willems, J.C.: Deterministic least squares filtering. J. Econometrics 118(1), 341–373 (2004)
32. Xie, L., Soh, Y.C., de Souza, C.E.: Robust kalman filtering for uncertain discrete-time systems. IEEE Trans.

Autom. Control 39(6), 1310–1314 (1994)
33. Yang, F., Wang, Z., Hung, Y.S.: Robust kalman filtering for discrete time-varying uncertain systems with

multiplicative noises. IEEE Trans. Autom. Control 47(7), 1179–1183 (2002)


	Introduction
	Problem Formulation and Bayesian Filtering
	Worst Case Approximation
	Robust Filtering
	Experimental Results for The Tracking Problem
	Summary
	Appendix Implementation of HRVW-alg to saddle point problem
	Appendix Implementation of HRVW-alg to worst case expectation minimization approximation problem
	Appendix Obtaining a solution to problem (SVE)
	Appendix Rolling horizon objective function coefficients

